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A simple method for chemoselective phenol alkylation
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Abstract—A simple and effective method for chemoselective alkylation of phenol over carboxylic acid using a 40% aqueous solution
of tetrabutylphosphonium hydroxide that affords the desired phenyl ethers in 82–99% yield is described.
� 2007 Elsevier Ltd. All rights reserved.
Phenolic ethers and carboxylic acids are found in a vari-
ety of active pharmaceutical ingredients in the pharma-
ceutical industry, for instance the potent fibrinogen
receptor antagonist MK-383 (1),1 and the PPAR a/c
agonist (2)2 (Fig. 1). In addition, phenol ethers are
important intermediates in medicinal chemistry.3 Syn-
thesis of these compounds typically suffers from the need
to use protecting groups to obtain improved chemose-
lectivity of ether formation relative to esterification. A
variety of methods for chemoselective esterification have
been developed,4 however, a method for chemoselective
alkylation of phenols over carboxylic acids has not been
reported. Phenolic ethers are generally prepared in two
ways: (i) Fisher ester formation, phenol alkylation,
and ester saponification;5 or (ii) dialkylation of both
the phenol and carboxylic acid followed by selective es-
ter saponification.2,6 However, for rapid SAR evalua-
tion or large scale synthesis of compounds in clinical
development these methods are economically inefficient,
time consuming, require an excess of reagents and/or
precious alkylating agents, and are not suitable for mol-
ecules that are sensitive to acid and/or base.
0040-4039/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Figure 1.
In support of a recent medicinal chemistry SAR effort to
evaluate ether analogs of 3, we developed a one-step
method for chemoselectively synthesizing phenolic
ethers in the presence of carboxylic acid functional
groups. Although the original medicinal chemistry pro-
cedure proceeded in three steps with reasonable yields
via Fisher ester formation, phenol alkylation, and ester
saponification, it was inefficient due to the number of
steps and time required to perform this simple opera-
tion. Herein we report a new and practical method for
the chemoselective alkylation of phenols in the presence
of carboxylic acids. The process, which was demon-
strated with a variety of alkylating agents and across
multiple substrates, occurs in high yield (82–99%) using
readily available reagents.

Our initial screen to evaluate the chemoselective alkyl-
ation of phenols over carboxylic acids used 4-hydroxy-
benzoic acid 4 as a representative substrate. Treatment
of 4 with allyl bromide using a variety of bases (NaOH,
KOH, Cs(OH)2, and n-Bu4NOH) and solvents (THF,
N-methylpyrrolidinone, N,N-dimethylformamide, di-
methyl sulfoxide, and ethanol), afforded a mixture of
both allyl ether and allyl ester. The best selectivity was
observed using n-Bu4NOH. Using 2 equiv n-Bu4NOH
the bis-tetrabutylammonium salt of 4 was generated that
upon reaction with 1 equiv allyl bromide afforded an
85:15 ratio7 of allyl ether/allyl ester.

Tetrabutylphosphonium salts exhibit good chemical8

and thermal stability9 and have lower toxicity10 than
ammonium salts. In addition, tetrabutylphosphonium
salts have been used to dramatically increase the
nucleophilicity of the fluoride anion, which has been
used to advantage in the chemoselective esterification
of hydroxybenzoic acids in ionic liquids.4b Since the
pKa difference of phenol relative to carboxylic acid is
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about five orders of magnitude (�9.7–4.7 in H2O),
chemoselective alkylation of phenol relative to a carbox-
ylic acid should be feasible by selection of the right base,
counterion, and solvent.

Thus, upon treatment of 4-hydroxybenzoic 4 with
2 equiv 40% aqueous tetrabutylphosphonium hydroxide
(n-Bu4POH) in THF at 0 �C, the bis tetrabutylphospho-
nium salt was generated that upon reaction with 1 equiv
allyl bromide chemoselectively afforded 4-(allyloxy)ben-
zoic acid 5 with no competing esterification. The scope
of these conditions were evaluated using a variety of
alkylating reactants (Table 1, Eq. 1). Ethyl, allyl, and
benzyl bromide reacted chemoselectively to afford the
corresponding ether in 91–94% yield. In addition, allyl
chloride afforded an 86% yield of the corresponding allyl
ether and a 90% yield of the benzyl ether, although the
reaction times were longer.
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1. Alkylation of 4-hydroxybenzoic acid 4 (Eq. 1)

ry R–X Yield 5a,b,c (%)

Allyl –Br 91
Allyl–Cl 86
Ethyl–Br 93
Benzyl–Br 94
Benzyl–Cl 90d

tions were carried at 5 mmol substrate in 10 mL THF with
iv 40% aq n-Bu4POH and 1 equiv R–X at 0 �C.
s are isolated and unoptimized.
products exhibit satisfactory spectroscopic and physical
erties.
reaction time.
The scope of substrates was evaluated using allyl or benz-
yl bromide as the alkylating agent (Table 2, Eq. 2).11 A
2. Chemoselective alkylation of a variety of substrates (Eq. 2)

ry Substrate, 6 R–Br Yield 7a,b,c (%)

4-Hydroxyphenyl acetic acid Allyl–Br 89
3-Hydroxyphenyl acetic acid Allyl–Br 83
3-Hydroxy benzoic acid Allyl–Br 84
4-Hydroxy-3-methoxy
mandelic acid

Allyl–Br 99d

4-Hydroxy-3-methoxy
mandelic acid

Bn–Br 83

2-Hydroxy nicotinic acid Allyl–Br 85
2-Hydroxy nicotinic acid Bn–Br 88
5-Hydroxy-1H–indole-
carboxylic acid

Bn–Br 82

tions were carried at 5 mmol substrate in 10 mL THF with
iv 40% aq n-Bu4POH and 1 equiv R–Br at 0 �C.
s are isolated and optimized.
products exhibit satisfactory spectroscopic and physical
erties.
ht percent assay yield.
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variety of aromatic or heteroaromatic substrates affor-
ded the corresponding allyl or benzyl ethers in 82–99%
yield. All reactions were highly chemoselective (100:1)
with no competitive esterification observed by HPLC.

Homogeneous, single-phase reaction mixtures were
maintained throughout the alkylation process. Upon
reaction completion, the mixtures were concentrated to
remove THF, and the resulting aqueous solution was
acidified to liberate the corresponding acid. All com-
pounds described in Tables 1 and 2 could be isolated
as a solid without chromatography. Those products that
were oils, for example, 5-hydroxy-1H–indole-carboxylic
acid (Table 2, entry 8) were converted into the corre-
sponding salt to facilitate isolation.

Finally, this method proved generally applicable for the
rapid synthesis of analogs of 3 for medicinal chemistry
and in vivo evaluation. For example, treatment of
hydroxy acid 8, with thiazalyl chloride 9 afforded the
desired ether 3 chemoselectively in 90% yield with no
competing esterification. This method proved very
robust for scaleup and further work in this area will
be reported in due course.
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In conclusion, we have developed a new method for the
chemoselective alkylation of phenols over carboxylic
acids using a 40% aqueous solution of tetrabutylphos-
phonium hydroxide that affords the corresponding phe-
nol ethers in high yields (82–99%).
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